Higgs searches

Cristobal Cuenca Almenar Yale University

on behalf of the ATLAS, Babar, CDF, CMS and D0 collaborations

Note

- Many analyses
 - probing all production mechanisms and decay modes
 - taking advantage of multivariate techniques for improved discrimination
 - using growing datasets (up to 8.2 fb⁻¹)

- We didn't find it yet
 - I'll give an overview of the latest results
- After a very short introduction, I'll show the latest SM Higgs searches results and then some new BSM results

LHC, Tevatron & the Higgs boson

- LHC luminosities ramping up fast
 - about 40 pb⁻¹ in 2010
 - about **400 pb**-1 in 2011
- Tevatron has already delivered above
 11 fb⁻¹
- Electroweak fit prefers m_H<185GeV

luminosity **7.0 fb**⁻¹ exp limit@115 GeV/SM **14**

obs limit@115GeV/SM 14

Higgs → YY

- Smaller branching fraction that bb decay channels, but better ID efficiency and energy resolution
- New result benefits from
 - extended acceptance in pseudorapidity: up to 2.8
 - neural network, NN, based identification
 - inclusion of converted photons

- Null hypothesis is assumed: fit serves as background model (smooth curve)
- Limits: binned likelihood
- No significant excess when trials factor accounted

luminosity 8.2 fb⁻¹ exp limit@115 GeV/SM 12 obs limit@115GeV/SM 22

Higgs → YY

- Event selection: two photons E_T>25GeV
- NN used to discriminate between jets and photons
- Main backgrounds arise from:
 - Drell-Yan and diphoton: estimated from MC
 - jet+γ and dijets from data with a matrix method
- Biggest systematic uncertainties from sample normalization and theoretical uncertainties. Integrated luminosity and data/MC factors also accounted for
- A BDT is used as final discriminant, shapes fitted for limit calculation

luminosity 38 pb⁻¹ exp limit@115 GeV/SM 20 obs limit@115 GeV/SM 38

Higgs → YY

- Event selection:
 - at least 2 central isolated photons with E_T > 25GeV, one with E_T > 40GeV
 - at least one good reconstructed vertex
- Main backgrounds: jet contamination and non-resonant γγ
 - estimated in isolation/ID sidebands
- Systematics include luminosity, theory, efficiency (inc. trigger) and resolution
- Power Constrained Limits, with profiled likelihood ratio

luminosity 6.0 fb⁻¹ exp limit@115 GeV/SM 15 obs limit@115GeV/SM 15

Higgs → TT + 2 jets

- Associated production, vector boson fusion and gluon fusion
- Event selection
 - one hadronically decaying tau
 - one electron or muon
 - at least one jet

- Irreducible backgrounds estimated from MC: Z+jets, top pairs, diboson,..
- Fakes calculated in data
- 1-jet and ≥1jet optimized separately
- Bayesian 95% CL exclusion limits are set with BDT score templates simultaneously fit for both channels

luminosity **5.4 fb**⁻¹ exp limit@115 GeV/SM **10** obs limit@115GeV/SM **12**

Higgs → TT + 2 jets

- Considers $H \to \tau\tau$ and $H \to WW$, from direct, associated and VBF production
- Final state: one e or μ , one hadronic τ and 2 jets.
 - Hadronic taus identified with NN for different decay modes
 - A cut on missing E_T significance reduce backgrounds
- Main backgrounds are top-pairs, Z and W +jets, multijets and diboson
 - multijet is estimated from data by reversing lepton cuts and computing same-sign to opposite-sign ratio
- A BDT is trained for each combination of production mechanism, decay mode and mass rang. The output shape of a final BDT is used to extract limits

luminosity 35 pb⁻¹ exp limit@400 GeV/SM 11 obs limit@400 GeV/SM 11

Higgs \rightarrow WW $\rightarrow \ell \upsilon + 2$ jets

- Production mechanism: gluon fusion and vector boson fusion
- High mass oriented search
 - 200 < M_H < 600 GeV
- Limits also on 4th generation
- Main backgrounds: W+jets and top-quark pairs, modeled with Alpgen and MC@NLO

- only one lepton, p_T > 30 GeV
- missing E_T > 30 GeV
 - two or three jets, $E_T > 30$ GeV, with two of them with invariant mass consistent with the W
- Exponential fit to the background to set limits with a profiled likelihood (systematics as nuisance parameters)

luminosity 8.1 fb^{-1} excludes $m_H = 165 \text{ GeV}$

Higgs → WW → $2\ell+2\upsilon$

- Gluon fusion is the main production mechanism, but VBF and associate production are also considered
- Search for final states with oppositely charged leptons: ee, $\mu\mu$ and e μ , and missing E_T
- Backgrounds: diboson, Z, W+jets, top pairs and QCD
 - multijets: from sidebans (anti-ID) and checked in same-sign
 - rest from MC, W via fakes normalized in control sample
- 0, 1 and 2 jet considered separately, training two different BDT for signal to BG discrimination
- BG normalizations are the biggest systematic uncertainty
- Limits with CLs on final BDT discriminant shapes

luminosity 36 pb⁻¹ exp limit@160 GeV/SM 3.4 obs limit@160 GeV/SM 2.4

Higgs → WW → 2ℓ+2υ

- Event selection based on
 - two opposite charged isolated high p_T electrons or muons from the Ws: $E_T > 20$ GeV and $|\eta| < 2.4$
 - large missing E_T > 20 GeV
- Analysis measures WW cross section, searches for SM and SM4 Higgs
- Main backgrounds: WW, W+jets, Z, top pairs
 - event level cuts applied to reduce their contributions
 - W+jets, Z and top are estimated with data-driven techniques
- Two methods: cut-based selection and BDT
 - cut based is based on $m_{\ell\ell}$ and $\Delta\phi_{\ell\ell}$
 - BDT uses other additional angles
- Systematic uncertainties on background are dominated by stats in control regions, 40%
- 95% CL exclusion limits were extracted using a Bayesian and CLs, yielding very similar results

luminosity 35 pb⁻¹ exp limit@160 GeV/SM 2.4 obs limit@160 GeV/SM 1.2

Yale

Higgs → WW → $2\ell+2\upsilon$

- Event selection:
 - two opposite charge leptons with at least 20 and 15 GeV
 - missing E_T>30GeV
 - small opening angle
 - extra requirements in some channels
- Likelihood fit of all channels to extract limits
- Process generated thru gluon fusion and vector boson fusion
- Major backgrounds:
 - t-quark, W+jets, Z+jets, WW
 - estimated from data with correction factors from MC
- Sample split in several channels:
 - ee, μμ and eμ
 - extra jets in the event: 0, 1 and 2

luminosity 40 pb⁻¹ exp limit@200 GeV/SM 25 obs limit@200 GeV/SM 24

Higgs \rightarrow ZZ \rightarrow 4 ℓ

- Production: gluon fusion and vector boson fusion. Sensitivity $130 < M_H < 600 \text{ GeV}$
- Event selection: 2 same flavor lepton pairs with opposite charge
- Lepton selection: electrons E_T>20GeV, isolation<30%, muons p_T>7 GeV, iso<20%
- ZZ background irreducible. Others can be suppressed with tight constrain on the dilepton mass. Other backgrounds: Z+jets and top-quark pairs
- ZZ* predicted from Z yield, Z+jets and top pairs estimated with MC after detailed study
- Systematic uncertainties: lepton reconstruction and ID, sample normalization, cross sections of signal and background processes
- Neyman Construction based on profiled likelihood ratio for limit extraction

luminosity 35 pb⁻¹ exp limit@400 GeV/SM 7 obs limit@400 GeV/SM 14

Yale

Higgs \rightarrow ZZ \rightarrow 2 ℓ +2 υ /2 jets

- While not as clean as the 4 lepton channel, yield is larger. Only high mass: both Z onshell
- Backgrounds: top paris, W+jets, dibosons,
 QCD
- Event selection
 - 2 good electrons or muons, with invariant mass consistent with a Z
 - at least 2 jets and low missing E_T
 - or larger missing E_T
- Systematic uncertainties:
 - Luminosity uncertainty 11%
 - theory signal cross section, about 15%
 - object reconstruction, ID and energy scale
- Limits from Neyman construct on profiled likelihood method with m_{lij} or m_T templates

Events / 5 GeV

luminosity **6.2** fb⁻¹ exp limit@115 GeV/SM **4.0** obs limit@115GeV/SM **3.4**

ZH → vubb

- Event selection: no more than 3 taggable jets with $E_T>20GeV$ and missing $E_T>40GeV$ (missing E_T significance >5)
 - 1 or 2 jets identified as b-jets with a BDT trained for discriminating against light flavor jets
 - leading jets not-back-to-back, missing E_T aligned with missing p_T
- Multijet background estimated from data, while other SM processes with MC
- Limits: log-likelihood ratio, systematics as gaussian constraints:
 - multijet background modeling and b-tagging

Light Higgs from Y(1S) decays

- Search for a decay of Y(1S) to a single photon and an invisible Higgs
- Strategy: search for single-photon decays of the Υ (1S) resonance
 - events tagged with transition $\Upsilon(2S) \to \pi + \pi \Upsilon(1S)$
 - select events with single energetic photon and large missing E
- Event selection:
 - two opposite charge tracks and one photon with E>0.15GeV
 - veto on additional energetic photons and energetic tracks and specific cuts to reduce neutrals background
- Signal/background discrimination enhanced by NN, several other cuts applied
- The largest systematic uncertainty is on the reconstruction/trigger/filter efficiency
- Likelihood scans preformed with
 - dipion recoil and missing mass
 - no discrepancy with background found in 14.4 fb⁻¹

W + 2 jets final state

- Dijet mass resonances already used for measuring the cross section of diboson processes WW, WZ: same final state
- Study Dijet mass above 100 GeV
- Event selection
 - one central isolated electron/muon, E_T>20 GeV
 - missing E_T > 25 GeV
 - transverse mass m_T > 30 GeV
 - 2 jets, E_T> 30GeV, dijet p_T>40GeV
- Main backgrounds: W+jets, QCD, top, Z
 - estimated from MC, except for
 - QCD: isolation sidebands
- Background reduction:
 - lepton isolation: cancel semilep decays
 - $\Delta \phi$ (MET, leading jet) > 0.4
 - veto events with extra leptons

W + 2 jets final state

- x² fit performed letting the W+jets normalization float, while constraining the other backgrounds to their measured cross sections
- Excess modeled with gaussian, width corresponding to a narrow resonance
- Significance: 3.2 standard deviations

Iuminosity 36 pb⁻¹
obs limit in ee 144 GeV
obs limit in μμ 156 GeV

Doubly charged Higgs → TT

- Inclusive search for production of $\phi^{++}\phi^{-}$ and ϕ^{+} $^{+}\phi^{--}$
- Search focuses on mass range where WW decay is not allowed
- Masses of the double and single charged Higgs is assumed degenerated
- Three or four lepton final state, no more than one hadronic tau
- Event selection: 3 or 4 isolated leptons, with additional optimized clean up cuts
- There are no doubly charged resonances in SM:
 - backgrounds are due to misidentification or mismeasurements: charge, Z+jets
 - estimation done in MC and crosschecked in control regions
- Main uncertainties due to tau-ID and statistics of sidebands (background estimation)

luminosity 36 pb^{-1} exp limit@150 GeV $\tan \beta = 30$ obs limit@150 GeV $\tan \beta = 23$

Charged Higgs → TU

- Search in top-pair dilepton sample, et and $\mu\tau$, where one of the top quarks decays to a charged Higgs
- Event selection requires additionally at least 2 jets, $p_T > 30$ GeV, and large missing $E_T > 40$ GeV
- "Fake tau" backgrounds are estimated from data (fake rates): top pairs in the lepton+jets channel and W+3jets
- Non-fake backgrounds are estimated from MC: Z
 +jets and top pairs in dilepton channel
- Bayesian method is used for extracting the limits on the BR of the top quark to a charged Higgs
- Systematic uncertainties are accounted in the fit, including the uncertainty on the "fake" background and the energy scale

Iuminosity 36 pb⁻¹ exp limit@150 GeV tanβ= 31

obs limit@150 GeV $tan\beta = 21$

Yale

Neutral MSSM Higgs → TT

- Event selection:
 - one hadronic tau, E_T > 20 GeV
 - one opposite charge leptonic tau
 - E_T > 20 GeV electron
 - p_T > 10 GeV muon
 - small m_T(lepton, missing E_T)

• Backgrounds:

- W+jets and QCD: fake estimation from same-sign pairs
- Z+jets: ⊤ embedding Z→µµ
- Limit setting: profile likelihood on visible dilepton mass templates
- Systematic
 uncertainties
 are accounted
 as nuisance
 parameters
 in the fit

Iuminosity 36 pb⁻¹ exp limit@150 GeV $tan\beta$ = 30 obs limit@150 GeV $tan\beta$ = 22

Neutral MSSM Higgs → TT

- Search for et, μt and eμ final states
- Full event kinematics reconstructed with a likelihood method
 - takes into account all the info available and results a gaussian centered in the true Higgs mass
- Event selection requires two isolated oppositely charged leptons with low M_T
- Main backgrounds are Z, QCD and W+jets
 - Z: estimated from MC, normalized to μμ decay
 - jets: estimated with same-sign events
- Main systematic uncertainty is related to tau-ID, and the normalization of the QCD background
- Likelihood fit, marginalizing systematics as nuisance parameters

luminosity up to $8.2~fb^{-1}$ excluded $158 < m_H/GeV < 174$

High mass combination

- Includes all WW final states available, and some $\gamma\gamma$ and $\tau\tau$ from D0
- SM cross sections:
 - gg→H, VBF and associate production have been calculated to NNLO
 - with MSTW NNLO PDFs

luminosity up to **8.2 fb⁻¹** exp limit@115 GeV/SM **9.0** obs limit@115GeV/SM **12.0**

Higgs → YY combination

Conclusions

- Big efforts being devoted in all experiments towards finding the Higgs
 - many new results in all different channels
- We didn't find it yet, but sensitivity keeps improving
 - Exclusion area is more and more robust
 - BSM searches are excluding more and more parameter space
- We expect several updates for the summer, including new combinations and very competitive results from the LHC